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Summary 

Mixture response surface methodology is a group of statistical methods which can 
generate an empirical equation that can be used to quantitatively define the 
relationship between some response, such as solubility, and the composition of a 
system, as for example, different solvent blends. The equation can be used to predict 

response at any proposed or desired mixture. The term response should be viewed in 
a very generalized sense to include any property that is affected solely by mixture 
composition and might include many measurable responses that are of interest to 
pharmacists: cost, half-life, taste, color, tablet hardness, bioavailability, extraction 
efficiency, chromatographic resolution, and so on. The method is in no way limited 
by the number of components in the mixture and thus should be viewed as being 
general in this sense also. The advantages of mixture response surface methodology 
and the mechanics involved in its use are illustrated through a prediction of the 
solubility of diazepam and phenobarbital in solvent blends. The approach is entirely 
empirical. It is based on rigorous statistical design and data analysis and can lead to 
excellent prediction of solubility. It also is shown how several responses can be 
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simultaneously analyzed to identify mixtures that strike compromises between 
maximization of some response (e.g. solubility) and minimization of another (e.g. 
cost). 

Introduction 

Formulators of drugs in oral and/or parenteral liquid dosage forms are often 
challenged with the problem of finding the right blend of solvents which would allow 

adequate solubility, stability, bioavailability, taste and maintain a reasonable cost. 
Trial and error approaches are inefficient and costly and extrapolations made from 
them can be inaccurate. Systematic experimental designs and rigorous data treat- 
ment, on the other hand, can lead to the desired information. This study demon- 

strates how one such method can be applied with obvious increased accuracy and 
experimental convenience. 

As far as solubility is concerned, various data treatments have been applied to the 
results of solubility experiments and different approaches have been tested for their 
potential in predicting solubility based on a limited number of data points. These 
approaches have met with varying degrees of success in several drug systems. For 
example, Yalkowsky et al. (1972) introduced the log linear equation which relates 
solubility to the composition of mixed solvent in binary aqueous systems. Subse- 
quently, Yalkowsky and Flynn (1974) found it necessary to expand a term in their 
equation into a fifth degree polynomial to account for non-linearity across the range 
of cosolvent (propylene glycol) composition in a study of the solubility of p-amino- 
acetophenone. Martin et al. (1980) and Adjei et al. (1980) on the other hand, 

introduced an approach to estimate the solubility of drugs in mixed and pure solvent 
systems based on an extension of the Hildebrand-Scatchard equation of regular 
solution theory. Martin et al. (1982) later showed that the log linear solubility 
equation of Yalkowsky et al. (1972) may be derived from the extended Hildebrand 
approach, thus providing a semi-theoretical foundation for the equation based on 
solubility parameters. 

More recently, Williams and Amidon (1984a) introduced an excess free energy 
approach to the estimation of solubility. In this approach, an expression for the 
excess Gibbs free energy of mixing for multicomponent solvent systems was used to 
obtain parameters characteristic of the interaction between the solvents. An equation 
was derived to predict the solubility of a solute in a co-solvent system and contains 
terms for solubility in pure solvents, solvent-solvent interaction contributions and 
contributions from the solute-mixed solvent interactions. They applied this ap- 
proach to solubility predictions in ethanol-water (1984b) and ethanol-propylene 
glycol-water mixtures (1984~). Prediction of solubility using this approach in 
ternary solvent systems and that of others for binary solvents in part involves an 
estimation of interaction parameters by statistical regression of experimental solubil- 
ities and hence involve fitting equations to data. 
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In a previous report, the solubility of phenobarbital in propylene 
glycol-glycerol-water systems was extensively studied (Moustafa et al., 1981). An 
equation was developed for the prediction of phenobarbital solubility in ternary 
solvent blends. The equation is an extension of the work of Yalkowsky et al. (1972) 
and simply includes a higher-order term to account for interactions in the ternary 
solvent system. The equations takes the form: 

log s, = log s, + cu,f, + Ly*f* + pf:f, (1) 

where (pi and CX~ are constants for propylene glycol and glycerol, respectively and f, 
and f, are the volume fractions of both solvents. The term flf:f, was determined 
from the fitting of some experimental solubility data to Eqn. 1; it presumably 
accounts for the increase in solubility due to solvent interactions. 

The present report describes the application of a statistical approach for dealing 
with mixtures that had earlier been introduced by Scheffe (1958). The usefulness of 
the approach to solubility predictions is demonstrated using the results of solubility 
determinations carried out on diazepam as well as to the previously published data 
set for phenobarbital solubility which was further enlarged for the purposes of the 
present study. In the statistical approach, a response such as solubility is measured 
as a function of mixture proportions (e.g. solvent blend composition). The 
response-mixture relationship can be described by a q-dimensional surface in space, 
where q is the number of components in the mixture. This surface can, in turn, be 
described by a polynomial which is generated to fit the experimental results and 
subsequently can be used for solubility prediction. Advantages of mixture response 
surface methodology include better solubility prediction, reduction in the amount of 
needed experimentation through application of statistical principles, extension to 
any number of components in a mixture, measuring several responses for simulta- 
neous assessment (stability, cost, etc.) and provision for easy visualization of 
imposed constraints in the formulation (e.g. blends available where one component 
cannot exceed a fixed amount). 

Experimental 

Diazepam ~5~ubility 
The solubility of diazepam 1 was determined in the 10 mixtures of ethanol 

‘USP’ 2, propylene glycol 3 and demineralized double-distilled water given in Table 
1. All chemicals were used as received. Approximately 20 ml of each mixture were 
placed in a volumetric flask, excess diazepam and a magnetic stir bar were added 
and the flask sealed and immersed in a jacketed beaker which was attached to a 

’ Diazepam Lot 709060, Hoffmann-LaRoche, Nutley, NJ 07110, U.S.A. 

* Pure Ethyl Alcohol UXP, U.S. Industrial Chemicals, Tuscoia, IL 61953, U.S.A. 

3 Propylene Glycol, Lot 795759, Fisher Scientific, Fair Lawn, NJ 07410, U.S.A. 
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TABLE 1 

EXPERIMENTAL AND PREDICTED SOLUBILITIES OF DIAZEPAM AT 20°C IN VARIOUS 

MIXTURES OF ETHANOL, PROPYLENE GLYCOL AND WATER 

Mixture 

number 

Volume fraction of solvent 

Ethanol Propylene glycol Water 

Solubility (mg/mI) 

Experimental a Predicted b 

(number trials) 

1 1.00 0 0 27.8 (2) 29.7 

2 0.66 0.17 0.17 28.0 (3) 25.6 

3 0.50 0.50 0 27.0 (3) 32.1 

4 0.50 0 0.50 6.02 (3) 5.07 

5 0.33 0.33 0.33 9.52 (2) 7.81 

6 0.17 0.66 0.17 13.0 (2) 7.82 

7 0.17 0.17 0.66 0.408 (4) 0.687 

8 0 1.00 0 7.42 (4) 8.10 

9 0 0.50 0.50 0.610 (2) 0.530 

10 0 0 1.0 0.0479 (2) 0.0347 

a Average of 2-4 determinations. 

b Using Eqn. 4. 

circulating water bath 4. The temperature was kept at 2O’C. Following the procedure 
of Saleh et al. (1980) the mixture was stirred for 24 h, allowed to equilibrate for 
another 24 h, filtered and an aliquot of the solution approp~ately diluted for 
spectrophotometric ’ assay. Absorbance was measured at 230 nm and concentrations 
were determined by referring to individual calibration curves for freshly prepared 
solutions of diazepam in the same solvent blends. No degradation of diazepam was 
detected in these solutions during the time of assay. 

Phenobarbital solubiiity 

The solubility data used in this report are those determined by Moustafa et al. 
(1981). Eight more data points were collected from further experiments carried out 
to test predictability at solvent volume fractions outside that covered by the original 
set of data. The composition of solvents and solubility values determined for 
phenobarbital in these mixtures of propylene glycol, glycerol and water are given in 
Table 2. In each experiment, approximately 30 ml of every mixture were placed in a 
volumetric flask, excess phenobarbital was added, the flask sealed and shaken in a 
thermostatically controlled water bath. The temperature was kept at 32°C and 
control was better than f0.2’C. Samples of the solution were pipetted, filtered 6 
diluted with the same solvent mixture and assayed spectrophotomet~cally ’ (Higuchi 
and Brochmann-Hanson, 1961) for phenobarbital. 

4 Haake, Constant Temperature Circulator, Model FK, Haake Instruments, 244 Saddle River Rd., 

Rochelle Park, NJ 07662, U.S.A. 

’ Beckman Spectrophotometer UV, Model 5260, Beckman Instruments, Fullerton, CA 92634, U.S.A. 
’ Membrane filter, 0.8 pm, Millipore, Bedford, MA, U.S.A. 

’ Pye-Unicam SP 600, Cambridge, U.K. 
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TABLE 2 

EXPERIMENTAL AND PREDICTED SOLUBILITIES OF PHENOBARBITAL AT 32°C IN VARI- 
OUS MIXTURES OF GLYCEROL, PROPYLENE GLYCOL AND WATER 

Mixture Volume fraction of solvent Solubility (mg/mI) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

- 

Glycerol Propylene 

glycol 

Water 
Experimental Predicted using: 

Eqn. 5 Eqn. 7 

0.3915 0.5000 0.1085 
0.7395 0.1000 0.1605 
0.4350 0.1000 0.4650 
0.2175 0.2000 0.5825 
0.0000 0.0000 1.0000 
0.6960 0.0000 0.3040 
0.6525 0.1000 0.2475 
0.5655 0.3000 0.1345 
0.5220 0.3000 0.1780 
0.5655 0.0000 0.4345 
0.5220 0.2000 0.2780 
0.1740 0.2000 0.6260 
0.1740 0.3000 0.5260 
0.3045 0.2000 0.4955 
0.3915 0.1000 0.5085 
0.0870 0.2000 0.7130 
0.0000 0.2000 0.8000 
0.2610 0.2000 0.5390 
0.0870 0.3000 0.6130 
0.1305 0.2000 0.6695 
0.0000 0.3000 0.7000 
0.3480 0.5000 0.1520 
0.3915 0.3000 0.3085 
0.5655 0.2000 0.2345 
0.3480 0.2000 0.4520 
0.2610 O.lOOJl 0.6390 
0.0000 0.5000 0.5000 
0.0000 0.1000 0.9000 
0.2610 0.0000 0.7390 
0.2610 0.5000 0.2390 
0.1740 0.5000 0.3260 
0.7830 0.0000 0.2170 
0.5220 0.1000 0.3780 
0.2610 0.3000 0.4390 
0.4350 0.0000 0.5650 
0.4350 0.2000 0.3650 
0.1305 0.0000 0.8695 
0.0870 0.5000 0.4130 
0.1740 0.1000 0.7260 
0.0870 0.1000 0.8130 
0.6090 0.2000 0.1910 
0.6525 0.2000 0.1475 

45.54 50.87 
10.96 12.23 
4.81 5.25 
4.68 5.08 
1.29 1.39 
5.44 5.86 
8.90 9.45 

24.36 25.80 
21.16 22.08 
4.09 4.26 

11.32 11.76 
4.42 4.58 
7.28 7.53 
6.14 6.33 
4.57 4.71 
3.67 3.77 
3.08 3.15 
5.54 5.66 
5.91 6.04 
4.09 4.15 
4.89 4.94 

42.24 42.64 
14.10 14.22 
13.39 13.47 
7.09 7.16 
3.47 3.47 

13.11 13.10 
2.08 2.07 
2.26 2.21 

31.50 30.55 
23.22 22.45 

7.61 7.34 
6.87 6.57 

10.03 9.57 
3.39 3.17 
9.76 9.07 
1.87 1.74 

18.25 16.93 
3.11 2.88 
2.64 2.43 

17.86 15.50 
22.76 17.90 

45.91 
11.64 
5.70 
5.47 
1.28 
6.07 
9.52 

23.73 
21.09 
4.59 

12.04 
4.88 
8.03 
6.88 
5.14 
3.87 
3.07 
6.14 
6.27 
4.35 
4.88 

40.06 
14.74 
13.44 
7.70 
3.75 

13.20 
1.96 
2.34 

30.45 
23.10 

7.29 
7.01 

10.25 
3.45 
9.64 
1.74 

17.48 
3.03 
2.44 

15.00 
16.73 
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Results and Discussion 

The observed solubility values of diazepam in various mixtures of ethanol 
(volume fraction x,), propylene glycol (volume fraction x2) and water (volume 
fraction x3) are shown in Table 1. Observed solubility values of phenobarbital in 
various mixtures of glycerol, (x,), propylene glycol, (x,), and water, (x3) are given 
in Table 2. Following the flow chart of Draper and St. John (1977) different models 
were examined relating solubility, S, to the volume fractions of the three solvents in 
the mixtures tested. These ranged from a simple equation were no product terms 
such as x, X x2 were considered (Eqn. 2) to models that were more complex (Eqn. 3) 

s= C&x, (2) 
i=l 

3 3 3 

s = c &Xi + c pijxixj -t c p_ix;’ (3) 
i=l i<j i=l 

In these equations, S is the solubility, xi is the volume fraction of component i and p 
is the coefficient to be fitted. 

Least-squares fitting ’ of the data to such equations resulted in the prediction of 
solubilities having negative values. This, of course, has no physical meaning. To 
accommodate this sign dilemma and since the addition of a co-solvent generally 
increases the solubility in a logarithmic fashion, the natural log of the solubility was 
regressed against the volume fraction of the components, again by the method of 
least-squares. Analysis indicated that the logarithmic transformation was a more 
appropriate choice for fitting the data. This is in agreement with Draper and Smith 
(1981) who point out that tr~sformation of the data sometimes enables the 
investigator to fit a lower degree polynomial than would otherwise be required and it 
is always more convenient to manipulate a lower-order equation. The simplest 
equation describing the relationship between log of solubility and solvent composi- 
tion was identified based upon established statistical methods. The criteria for best 
fit were considerations of correlation coefficient, residual pattern, sum of squared 
residuals among the various models used and a knowledge of the usual physical 
behavior of such systems. Terms were assumed insignificant if the standard error of 
a coefficient was more than twice the absolute value of the coefficient itself. 

The equation that best fit the diazepam and phenobarbital data was a reduced 
form of the special cubic equation of Scheffe (1958) Eqns. 4 and 5, respectively. The 
correlation coefficient used was an adjusted R-squared (Ri) term; it differs from the 
ordinary R2 by taking into account the number of parameters needed to fit the data 
(Marquardt and Snee, 1974). The adjusted value is helpful when comparing different 

a Ail fitting was done using the Statistical Analysis System (SAS), SAS Institute, P.O. Box 10066, 
Raleigh, NC 27605, U.S.A. 
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TABLE 3 

COEFFICIENTS AND STANDARD ERRORS (SE.) OF THE EQUATIONS BEST FITTING SOLU- 

BILITY TO COMPONENT FRACTION FOR DIAZEPAM AND PHENOBARBITAL 

Diazepam Phenobarbital 

Term Eqn. 4 Term Eqn. 5 Eqn. 7 

Coefficient SE. Coefficient S.E. Coefficient S.E. 

Xl 3.39 0.221 xq 2.60 0.120 2.44 0.079 

x2 2.09 0.152 x2 5.47 0.293 5.43 0.255 

x3 - 3.36 0.192 x3 0.330 0.055 0.250 0.040 

XIX2 2.91 0.093 x4x2 1.45 0.919 0.934 0.516 

XIX3 6.44 0.981 x4x3 - 0.656 0.393 0.151 0.264 

x1x2x3 8.37 6.06 x2x3 - 1.31 0.640 -1.03 0.496 

x4x2x3 - 2.07 2.43 - _ 

models using the same data set and moreover, Marquardt and Snee showed that the 
usual R-squared is not appropriate as it always results in a very misleading high 
value. 

In(S) = 3.39x, + 2.09~~ - 3.36x, + 2.91x,x, + 6.44x,x, + 8.37x,x,x, (4) 

In(S) = 2.60x, + 5.47~~ + 0.33x, + 1.45x,x, -0.656x,x, - 1.31x,x, - 2.07x,x,x, 

(5) 

Values of R’, were 0.973 and 0.993 for Eqns. 4 and 5, respectively. These equations 
can be used to predict the solubility of either drug in any mixture of components. 
Table 3 gives the standard errors of the coefficients in Eqns. 4 and 5. Tables 1 and 2 
list the solubilities predicted using Eqns. 4 and 5. Fig. 1A is a plot of Eqn. 4 that 
attempts to represent the solubility surface for diazepam in three-dimensional space 
(q = 3). Figures such as 1A enable one to determine whether it is possible to 
formulate a solution having the desired concentration at a particular combination of 

solvents. Any concentration above the solubility surface at a particular component 
mixture represents a supersaturated solution since the surface defines the solubility 
limits at a particular temperature. Fig. 1B is a contour plot of the same equation 
where the view is that of looking down along the response axis. Each plateau or line 
represents a constant solubility. The dotted lines are negative logarithm values. 

Another potential response of interest to a formulator is the cost involved in the 
use of a particular mixture. In generating a cost surface for the diazepam case, the 
coefficients of the equation relating cost, C (in dollars/ml), to fraction of component 
in a mixture are given by Eqn. 6 where x,, x2, and x3 again refer to ethanol, 
propylene glycol and water volume fractions, respectively 9. 

9 The cost of solvents used was obtained from the Ohio State University Laboratory Stores. 
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A B 
Fig. 1. A: a three-dimensional representation of Eqn. 4 which describes the response surface (solubility) as 
a function of solvent fraction. B: contour plot of Eqn. 4 where the view is that of looking down along the 

response (soIubihty) axis. Each line or plateau represents a constant natural logarithm of the solubility; 

the dotted lines are negative logarithmic values. In both A and B, x, is the fraction of ethanol, x2 is the 

fraction of propylene glycol, and x3 the fraction of water. 

C = 4.67 x 1O-3x, + 4.03 x 1O-3x, + 1.34 x 1O-4x, (6) 

Plots of Eqn. 6 are given in Fig. 2A and B. Fig. 2A is a three-dimensional 
representation of the data showing the cost response surface. It is a plane in 

A B 
Fig. 2. A: a three-dimensional representation of Eqn. 6 which describes the response surface (cost) as a 

function of solvent fraction. B: contour plot of Eqn. 6 where the view is that of looking down along the 

response (cost) axis. Each line or plateau represents a constant cost. 
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three-dimensional space since only first-order terms in composition are used. Fig. 2B 
gives the corresponding contour plot for Eqn. 6; the view is that of looking down 

along the cost axis which extends out of the paper. Each line or plateau of constant 

cost rises from lower right toward upper left. 
To illustrate the usefulness of a simultaneous assessment of responses, consider a 

desire to identify mixtures of the three solvents maximizing diazepam solubility 

while minimizing cost. One way of doing this is a graphical method which involves 
superimposing Figs. 1B and 2B. Fig. 3 has the contour plots for solubility and cost 
superimposed upon one another. Consider the following example for the use of Fig. 
3. Suppose a concentration of diazepam of 1.2 mg/ml was desired and not more 
than 10% ethanol may be used. Fig. 3 shows that the formulations possible would be 
bound by the solubility line to the right and to the top by a line drawn at the 10% 
level of ethanol parallel to the x, base (see area outlined in Fig. 3). Another method 
of finding an optimum formulation is computer-based where, with the appropriate 

software (Derringer and Suich, 1980), the optimum can be calculated, provided all 
responses of interest have been fitted correctly and all constraints have been 
considered. As long as there are not too many components, the graphic approach 
will probably suffice for most applications. 

Fig. 4 is a triangular graph depicting the experimental design and shows the 42 
phenobarbital solubility data points originally run (open circles). Fig. 5 is a contour 
plot of Eqn. 5 for phenobarbital solubility and may be interpreted in a manner 
similar to Fig. 1B for diazepam. 

Tables 1 and 2 show the agreement of observed solubility values with those 
generated by the statistical approach adopted in this study for experimental points 
in both the diazepam and phenobarbital solubility systems. A comparison of the fit 

Fig. 3. Superimposition of the natural logarithm solubility surface (solid lines) and the cost surface 

(dashed lines). The plot is constructed using Figs. 1B and 2B. The volume fractions of ethanol, propylene 

glycol, and water are xl, x2 and xs, respectively. The figure is used to optimize a formulation with respect 
to solubility and cost as described in the text under a constraint of there being not more than 10% ethanol 

in the final product. 
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Fig. 4. Triangular graph depicting the experimental design space for phenobarbital solubility in ternary 

mixtures. Open circles indicate the 42 data points originally run (some closed circles obscure the data 

points). Closed circles are the data points that are suggested by an extreme vertices selection design as the 

only ones needed to adequately define the entire solubility surface. xq = glycerol; x2 = propylene glycol; 

and x3 = water volume fractions. 

to observed solubility values, in the phenobarbital system, by the statistical approach 
and, an extension of the log-linear equation (Eqn. 1) as used by Moustafa et al. 
(1981) is shown in Fig. 6 at fixed concentrations of propylene glycol. The statistical 

tx4=0 
Fig. 5. Contour plot of Eqn. 5 where the view is that of looking down along the response (solubility) axis. 
Each line represents a constant natural logarithm of the solubility. xq = glycerol; x2 = propylene glycol; 

and x3 = water volume fractions. 
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approach provides a better fit especially when higher glycerol and/or propylene 
glycol concentrations are used. The mixture response technique like other regression 
analyses fits data to empirical equations. The equations generated will always 
provide as good as, and invariably a better, fit than equations based on a theoretical 
model. This was shown in a comparison of solubility prediction for xanthines in 
water-dioxane mixtures using this method with that of Martin and coworkers 
(Ochsner et al., 1985). Prediction of solubility based on first principles is un-doubtedly 
what is most desirable but this is often very difficult to achieve because a universally 
acceptable explanation for the non-ideality that is frequently encountered is not 
available yet. Empirical statistical methods of course require experimental observa- 
tions of solubility but the equations identified always fit the data regardless of the 
extent of non-ideality as seen for example in the solubility of xanthines in water-di- 
oxane or phenobarbital in propylene glycol-water-glycerol. 

With Eqn. 5, where seven coefficients are being estimated, the use of 42 data 
points to generate a surface is far in excess of the number needed. From a practical 
standpoint, one would like to use a number of points that would allow for the 

O-J, , , , * , , , , , , 
0 IO Jo 50 70 90 

VCLUME PERCENT GLYCEROL IN WATER 

Fig. 6. The relationship between solubility of phenob~bital (mg/ml) and volume fraction of glycerol and 
water at fixed concentrations of propylene glycol (0, 10, 20, 30 and 50%). Each set of two lines is at a 
different fixed propylene glycol concentration. Symbols are observed solubilities, dashed tines are 

solubilities predicted by Eqn. 1 (Moustafa et al., 1981) and the solid line is the solubility predicted by the 
present method, Eqn. 5: (0) original data points; (e) added data points. 
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estimation of the desired coefficients while still allowing the investigator some idea 
of the relative error involved. An analogous situation that most investigators would 
be familiar with is in the generation of a standard curve in analytical work. 

If there is some idea with respect to the form of the equation that will fit the data, 
then through the statistical concepts of experimental design, it is possible to dictate 
how many mixtures are needed and what mixtures they should be. While a basic 
understanding of these selection techniques can be extremely complex to the 
uninitiated, to use them all that is needed is knowing which model applies and then 
referring to texts for the appropriate design to be used (Draper and St. John, 1974). 
In systems such as the one considered here, where there are constraints on one or 

more of the components, the extreme vertices design as proposed by McLean and 
Anderson (1966) is particularly useful for the selection of experimental mixtures to 
be run. Application of the procedures outlined by McLean and Anderson lead to the 
identification of eleven mixtures (closed circles in Fig. 4) that should be used to 
generate the predicting polynomial. Data points from among the 42 collected in the 
solubility study that lay closest to the mixtures generated by the extreme vertices 
design were used to define again a surface relating solubility to component fraction. 
Only 10 points were used because when the design generates points that are close to 
each other the usual procedure is to average the values and run only one point: these 
points are the two to the right on the top horizontal line of Fig. 4. The actual data 
points used to generate the new surface based on fewer data points were (referring to 
Table 2): Mixture Numbers 1, 2, 5, 8, 17, 21, 27, 31, 35, and 36. Using these data 
points only, the new surface generated is characterized by Eqn. 7. 

In(S) = 2.44x, + 5.43~~ +0.250x, +0.934x,x,+0.151x,x, - 1.03x,x, (7) 

This surface in theory should be identical to the one derived from the larger data set 
and indeed one can see that Eqns. 7 and 5 agree quite closely. Table 2 lists the 
solubilities predicted by Eqn. 7 which compare quite well with those predicted using 

Eqn. 5 even though Eqn. 7 is a simpler polynomial. 
Eight more data points were added extending the volume fraction of each solvent 

from 0 to 1. Predictions based on equations developed for the 42 point data set were 
entirely applicable to the 8 additional points. This can be seen in Fig. 6 where the 
closed circles represent 5 of these added data points whereas the curve was generated 
from the 42 point data set (Eqn. 5). It should be noted and apparent that the use of 
equations generated using a particular domain of mixtures need not be applicable in 
the prediction of solubilities for mixtures outside that original domain. 

The statistical techniques illustrated in this report for diazepam and pheno- 
barbital are readily extended to any number of components. With three solvents, an 
equilateral triangle describes the experimental design region; with four components, 
a tetrahedron. It is possible to have five or more components but these are difficult 
to picture in three-dimensional space although they can be handled easily mathe- 
matically and on the computer. There are several other extensions of the use of 
mixture response methods. A predictive equation may be generated and subse- 
quently used for optimizing a formulation, and it may also help in identifying a 
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theoretical or mechanistic relationship between response and mixture composition. 
Thin-layer chromatography and high-pressure liquid chromatography are two areas 

of possible routine application for mixture experiments where solvent mixtures are 
sought to maximize resolution. Tablet formulation (Jontschev and Welikowa, 1981) 
is another area where mixture experiments are applicable. Applications of mixture 
response surface methodology abound in the pharmaceutical sciences and it is hoped 
that this paper will encourage other workers to learn and apply these methods. 
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